Abstract

The photochemical processes of dissolved humic acid and its potential contribution to As(III) oxidation in natural water has received considerable attention. However, the role of mineral-humic complexes in As(III) conversion is rarely studied. Herein, two simulated mineral-humic complexes were prepared by coating humic acid on hydrous aluminum oxide, HA@HAO, or montmorillonite, HA@SWy, respectively, and batch experiments at circumneutral pH were performed under light irradiation. Our findings showed that the light-assisted oxidation of As(III) increased with increasing fractions of organic carbon in mineral-humic complexes, and As(III) photooxidation with HA@HAO or HA@SWy was up to 18.2 or 3.5-fold higher compared to that measured in the presence of equivalent amount of free HA, respectively. The reactive triplet state of HA and hydroxyl radicals in HA@HAO and HA@SWy system made a primary contribution to As(III) oxidation under irradiation. The results indicated that mineral-humic complexes have dual roles, an adsorbent and a photosensitizer, to promote As(III) access to reactive intermediates at the particle surfaces. This process was important for As(III) conversion in paddy water as colloidal particles, composed of both minerals and HA, could greatly promote As(III) oxidation and As(V) immobilization. This study provides a previously overlooked, important mechanism of As(III) phototransformation mediated by mineral-associated humic acid in natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call