Abstract

ABSTRACT The nucleophilic attack step of the hydrolysis reaction mechanism of the glycine-glycine peptide bond mediated by the enzymatic action of various proteases was elucidated by means of DFT calculations. Five different protease models were considered; namely: cysteine (Cys), threonine (Thr), serine (Ser), aspartyl (Asp) proteases, and a metalloprotease containing zinc (Zn). The model was simplified in order to gain information about the nucleophilic attack in this type of reaction. As a comparative study, this work is focused on the trend in the reactivity of the models. According to the computed activation energies, the reactivity order was determined as follows Cys < Thr < Ser < Zn < Asp, being in all cases faster than the uncatalysed spontaneous hydrolysis. A further analysis of the reactions by means of the reaction force approach showed that the structural changes accounts for 65–90% of the total activation energy. Moreover, a natural bond orbital analysis allows the reactions to be classified as synchronous with a late transition state for all cases. Systems analogous to the Cys-protease can be proposed as a promising candidate for the design of mimetic systems capable to cleavage amide bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.