Abstract

Studied sludge samples are composed of major goethite and quartz; less clay minerals; and minor magnetite, hematite, clinochlore and todorokite. They have quite similar qualitative, but different semi-quantitative compositions. There are similar particle size distributions between the samples, and the highest contents of ~50% belongs to the finest classes of <6 μm. Among size classes within the samples, almost identical iron contents are present; indicating their similar mineral compositions, which make these systems very complex for further separation processes. Sludge II has a higher natural settling rate, due to its higher density and mineral composition. With addition of the flocculant, settling rates increase significantly with the increase of the liquid component in both of the samples. The effect of flocculant on the settling rate is different between samples, and depends on their mineral composition. The time of settling does not play a role in selectivity, to the ratio of the mass of floating and sinking parts, and iron content does not change with time. The content of iron partially increases by flocculation; therefore, this method should be considered as an appropriate one. Zeta potential values for sludge are mostly between those for goethite and quartz, indicating their particle mixture and intricately association.

Highlights

  • The iron ore deposit “Omarska” (Bosnia and Herzegovina) is located in the northeast part of the “Sana paleozoic”, or the Ljubija metalogenetic region; and in the Omarska-Prijedor field between the cities of Prijedor and Banja Luka [1,2]

  • The chemical analyses of two sludge samples show significant differences, and that was the main reason why they were selected for further comparisons

  • Determined loss on ignition (LOI) contents, Si/Al ratios and pH values are very similar in both samples

Read more

Summary

Introduction

The iron ore deposit “Omarska” (Bosnia and Herzegovina) is located in the northeast part of the “Sana paleozoic”, or the Ljubija metalogenetic region; and in the Omarska-Prijedor field between the cities of Prijedor and Banja Luka [1,2]. Iron ore from Omarska mine was previously assigned as limonite ore in association with clay minerals, quartz and some manganese minerals [1] As it is well known, limonite is one of the two principal iron ores (the other being hematite, Fe2 O3 ), and has been mined for the production of iron. It should be classified mainly as a mixture of hydrated iron oxides and hydroxides, with a chemical formula which could be written as Fe2 O3 ·H2 O. X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR) and scanning electron microscope-X-ray microanalysis (SEM-EDS) analyses were recently performed for obtaining more precise mineral determination [2]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call