Abstract

A highly sensitive D-shaped photonic crystal fiber sensor with circular lattice is proposed for external plasmonic sensing. The proposed design of plasmonic material in a D-shaped form effectively facilitates the excitation of surface plasmons and enhances the sensor performance. As a comparative study, two different plasmonic materials, gold and silver, are applied D-shapely on the fiber and the proposed sensor performance is numerically investigated and evaluated. Moreover, the optimized structural parameters such as air-hole diameters and the thickness of silver and gold layers are selected via simulation results which cause the highest sensitivity of 40000 nm/RIU for the gold coated fiber using the wavelength interrogation method. Furthermore, the maximum figure of merit can reach 621.50 Analytes with the refractive indices ranging from 1.34 to 1.39 can be detected by double-loss peak that is a more reliable method of simultaneous detection and verification of sensing characteristics. Due to its promising results, the proposed sensor can be widely useful in the area of chemical and biological sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.