Abstract

The electronic structure of three single-atom bridged diiron octapropylporphyrazine complexes (FePzPr8)2X having Fe(III)-O-Fe(III), Fe(III)-N-Fe(IV) and Fe(IV)-C-Fe(IV) structural units was investigated by Mössbauer spectroscopy and density functional theory (DFT) calculations. In this series, the isomer shift values decrease, whereas the values of quadrupole splitting become progressively greater indicating the increase of covalency of Fe-X bond in the μ-oxo, μ-nitrido, μ-carbido row. The Mössbauer data point to low-spin systems for the three complexes, and calculated data with B3LYP-D3 show a singlet state for μ-oxo and μ-carbido and a doublet state for μ-nitrido complexes. An excellent agreement was obtained between B3LYP-D3 optimized geometries and X-ray structural data. Among (FePzPr8)2X complexes, μ-oxo diiron species showed a higher reactivity in the cyclopropanation of styrene by ethyl diazoacetate to afford a 95% product yield with 0.1 mol % catalyst loading. A detailed DFT study allowed to get insight into electronic structure of binuclear carbene species and to confirm their involvement into carbene transfer reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call