Abstract

We report an investigation of the adsorption of thiol and isocyanide molecules on colloidal Ag nanocubes through surface-enhanced Raman scattering (SERS). Specifically, we collect SERS spectra in situ at different time points from a mixture of Ag nanocubes and ligand molecules at a specific concentration. We demonstrate that 4-nitrothiophenol could readily bind to the Ag surface through strong thiol–Ag interaction. We also observe red shifts for the SERS peaks as the concentration decreases, suggesting a change to the molecular orientation relative to the surface. Likewise, 4-aminothiophenol also adsorbs onto Ag quickly, but gives much weaker SERS signals relative to 4-nitrothiophenol because the electron-donating amine group would retard the chemical enhancement of SERS. Different from thiols, 1,4-phenylene diisocyanide binds to Ag surface through a relatively weak, σ-donation bond. With an increase in concentration, molecules tend to adsorb on the nanocubes with the benzene ring tilting away from the su...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.