Abstract

The Runge–Kutta–Nyström (RKN) explicit symplectic difference schemes with the number of stages from 1 to 5 for the numerical solution of molecular dynamics problems described by the systems with separable Hamiltonians have been considered. All schemes have been compared in terms of the accuracy and stability with the use of Gröbner bases. For each specific number of stages, the schemes are found, which are the best in terms of accuracy and stability. The efficiency parameter of RKN schemes has been introduced by analogy with the efficiency parameter for Runge–Kutta schemes and the values of this parameter have been computed for all considered schemes. The verification of schemes has been done by solving a problem having the exact solution. It has been shown that the symplectic five-stage RKN scheme ensures a more accurate conservation of the total energy of a system of particles than the schemes of lower accuracy orders. All investigations of the accuracy and stability of schemes have been carried out in the analytic form with the aid of the computer algebra system (CAS) Mathematica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.