Abstract

This paper presents a 3-phase, 6-slot, and 4-pole Mutually Coupled Switched Reluctance Motor (MCSRM 6/4) with new current distribution. This kind of SRMs has both the merits of conventional SRMs and Fully Pitched SRMs, i.e. shorter end-windings and higher torque density. A comparison based on Finite Element Method (FEM) between conventional and mutually coupled SRMs, in terms of self flux-linkage and inductance per phase, mutual flux-linkage and inductance between phases, and output torque is realized. The conventional SRM is excited in unipolar mode, while the MCSRM is excited in bipolar overlapping mode. With a high coupling between phases for MCSRM, mutual inductances are employed to produce torque. Furthermore, the flux pathways are separated and distributed between phases, this leads to a less sensitivity to magnetic saturation. At high current density and high conduction angle, the MCSRM has a higher output torque and a lower torque ripple. Thus, comparing to conventional SRMs, the MCSRM is more outstanding for starter-generator applications (hybrid vehicles, aerospace) which needs high output torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call