Abstract
Dielectric properties of (1-x)Ba(Fe0.5Nb0.5)O3-xBaTiO3 (where x = 0.00, 0.05 and 0.10) solid solution ceramics at high temperature range of RT ~ 270 o C have been characterized in this paper. The above said polycrystalline ceramics with (x = 0.0, 0.05 and 0.10) have been produced via a mixed oxide route. The effects of BaTiO3 substitution on the structure and on the electrical and ferroelectric properties of Ba(Fe0.5Nb0.5)O3 samples have been studied by performing x-ray diffraction and dielectric measurements. The dielectric properties (e¢ and tan d) were investigated in the temperature range of 30-270 °C and in the frequency range of 100 Hz-5 MHz. The variation of relative dielectric permittivity (tan d) and tangent loss (tan d) has suggested a significant role of hopping of trapped charge carriers, which is resulted in an extra dielectric response in addition to the dipole response. It is observed that: (i) the relative dielectric permittivity and tangent loss (tan d) are dependent on frequency, (ii) the temperature of dielectric permittivity maximum shifts toward lower temperature side and (iii) dielectric permittivity and tangent loss rapidly increase by making solid solution of BFN with BaTiO3. X-ray diffraction analysis of the compound suggests the formation of single-phase compound with monoclinic structure. SEM photographs exhibit the uniform distribution of grains. The maximum ferroelectric transition temperature (Tc) of this system was 250-270 °C with the dielectric constant peak of 72500 at 1.09 kHz for x = 0.05.
Highlights
ExperimentalRecently, perovskite like ceramics have been at the center of research to study the ferroelectric and piezoelectric materials because of the diversity of their physical properties
Various relaxation processes seem to coexist in real perovskite crystals or ceramics, which contain number of different energy barriers due to point defects appearing during technological process
All the reflection peaks were indexed using observed inter-planar spacing d, and lattice parameters of all the samples were determined by using least-squares refinement method
Summary
ExperimentalRecently, perovskite like ceramics have been at the center of research to study the ferroelectric and piezoelectric materials because of the diversity of their physical properties. He involved in the preparation of fine ceramics, ferroelectric piezoelectric and non lead based materials. Perovskite like ceramics have been at the center of research to study the ferroelectric and piezoelectric materials because of the diversity of their physical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.