Abstract

In this study, 2.5 kW single-phase pulse-width modulated rectifier is simulated with three different control techniques to investigate the performance of controllers. Rectifier simulation is performed in Matlab / Simulink environment by using hysteresis current control, sinusoidal pulse width modulation and voltage oriented control techniques. In the performance comparison of the control techniques, considering the switching frequencies, the total harmonic content of the current drawn from the grid, the phase difference between the grid voltage and the grid current, and the DC bus voltage regulation at the output are considered as comparison criteria. The switching frequency is set to 35 kHz in sinusoidal pulse width modulation and voltage oriented control techniques. Since the switching frequency is variable in the hysteresis current control technique, the average and instantaneous switching frequency are calculated for different hysteresis band values. In the results with the technique, the switching frequency varies between 18.52 kHz and 47.6 kHz, while the average switching frequency is 34.6 kHz. As a result, the total harmonic distortion of the grid current with hysteresis current control, sinusoidal pulse width modulation and voltage oriented control techniques is 3.69%, 1.12% and 1.82%, respectively. The synchronization with the grid voltage is achieved with all techniques, and the DC voltage is regulated with active power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.