Abstract

AbstractNowadays, there are various ship design software packages that make use of special understanding or theories on ship hydrodynamics to cope with the demand by the shipbuilding industry. This paper focuses on comparing the accuracy of various (selected) software or program packages in calculating the ship wave resistance by relevant theories solved by various methods of solution and comparing the results with experimental model test results. A comparison was made between Maxsurf resistance software utilizing the relevant theories and methods of solution by Holtrop and Mennen and the Slender Body theories, Ship Flow CFD software, and the final root method with the MSK-ESolver software. The embedded algorithm inside each software program was tested for their accuracy by using the same hull forms (wigley and offshore patrol vessel hull forms). The selection of each hull form was based on their practicality in this study. The Wigley hull form represents the mathematical parts of the research as the hull form itself was generated by a generally known formula. The offshore patrol vessel (OPV) hull form on the other hand represents the actual ship shape hull form (currently in service) for research practicality and relevancy for the shipbuilding industry. Series of calculations were computed based on Holtrop & Mennen, Slender Body theories, Ship Flow CFD, and final root method of solutions. The baseline of each finding was referred to the model test (towing tank experiment) results for comparing the accuracy of the results. Sets of graphs of wave resistance Rw against Froude number proved the accuracy of the results for each calculation method. The trendlines that mimic or closest to the results of the model tests are considered as the most accurate methods of solution. Research discussion and conclusion are presented explicitly based on these findings. The final root method of solution with the MSK-ESolver software shown by the cross-plotted graphs are the closest to that of the graph of the experimental data. The percentage differences for final root method with MSK-ESolver software are also very small within 2.5–4.7% as compared to the experimental data from the model tests.KeywordsMaxsurf resistanceShip flowMSK-ESolver

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call