Abstract

The increasing installation of photovoltaic panels in low-voltage grids causes an over voltage problem, especially during high production and low consumption periods. Generally the over voltage problem is overcome by implementing reactive power control methods. The advances in networked control systems theory and practice create new scenarios where reactive power control methods can offer additional features and benefits. To explore these new capabilities, this study presents two new reactive power control methods that exploit the networked approach. These two methods are evaluated in a comparative reference framework that also includes the base-line case where no reactive control method is applied, the conventional droop method approach, and a solution based on a near-optimal location of a high power STATCOM derived from one of the new proposed networked methods. The main merit factors used to compare the control methods are the maximum voltage across the distribution grid, the power factor in the point of common coupling, and the total power losses and economic cost of the installation. With these merit factors, the advantages and limitations of the new and existing control methods are revealed and discussed. A useful discussion for selecting the best control solution is also reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call