Abstract
Two tungsten-based Keggin-type heteropolyacids (PW12: ([PW12O40]3−) and SiW12: ([SiW12O40]4−)) were hybridized with brookite-type TiO2. Then photocatalytic decomposition activity, photoinduced hydrophilicity, and sustainability of the hydrophilicity in the dark were evaluated using gaseous 2-propanol (IPA) decomposition and sessile drop method. The obtained films were transparent in the visible wavelength range. Both hybrid films exhibited higher photocatalytic decomposition activity and had higher photoinduced hydrophilicizing rates than pure brookite films under UV illumination. The PW12/TiO2 film exhibited better photocatalytic performance than the SiW12/TiO2 film did. Atmosphere dependence, XPS analysis, and electrochemical experiments indicated the cause of these two films' different levels of sustainability of hydrophilicity to be differences in their electron storage capability. Results show that the electron scavenger capability and reoxidation efficiency of the heteropolyacid are key factors affecting the overall performance of wettability conversion of this hybrid film system before and after UV illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.