Abstract

In this study WO3/TiO2/Fe3O4 nanocomposite particles with different amount of WO3 content (1, 3, 5, 8 and 10 wt.%) were prepared via sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface areas, diffuse reflectance spectra (DRS) and the vibration sample magnetometry (VSM) were used to characterize the nanocomposites. The photocatalytic activity of the nanoparticles was tested by degrading direct blue 71 dye solution under visible light irradiation. The enhanced photocatalytic activity is attributed to the electron–hole separation and transformation among the semiconductors. The effect of the initial dye concentration, catalyst dosage and the photocatalytic reaction apparent rate constant kapp were also investigated. On the other hand the WO3/TiO2/Fe3O4 nanocomposites could be readily recovered from the reaction solution by using a permanent magnetic bar and their photocatalytic activity was studied after six cycles of repetitive recycling. Then, this nanocomposite can be used as highly efficient and reusable photocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.