Abstract

This paper presents the viscosifying and oil recovery efficiencies of a novel high-molecular-weight ternary polyampholyte (TPA), composed of 80 mol.% acrylamide (AAm) (a nonionic monomer), 10 mol.% 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) (an anionic monomer), and 10 mol.% (3-acrylamidopropyl) trimethylammonium chloride (APTAC) (a cationic monomer), in various high-salinity brines as compared to the efficiency of hydrolyzed poly(acrylamide) (HPAM), which is the most commonly used polymer in oil production. The results show that, in a range of salinity from 200 to 300 g∙L−1, the viscosity of the TPA solution is rather high and relatively stable, whereas that of HPAM severely decreases. The ability of TPA to increase its viscosity in extremely high salinity brines is explained by the antipolyelectrolyte effect, resulting in the unfolding of macromolecular chains of charge-balanced polyampholytes at a quasi-neutral state, which occurs due to the screening of the electrostatic attraction between oppositely charged moieties. The novelty of this research is that, in high-salinity reservoirs, the amphoteric terpolymer Aam-AMPS-APTAC may surpass HPAM in oil displacement capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.