Abstract
Various commercially imported ceramic materials used in the building of Sudanese dwellings were examined in order to determine their natural radioactivity and radiological hazard parameters. In this context, twenty-five different consignments were sampled and analyzed using (3″ × 3″) sodium iodide gamma spectrometry system NaI(Tl). The identified average activity concentrations of 238U, 232Th, and 40K were 183 ± 70, 51 ± 44, and 238 ± 77 Bq/kg dry-weights, respectively. A positive correlation between 238U and 232Th in the investigated samples was identified from the observed significant correlation (R2 = 0.8). Interestingly, a low Th/U ratio (~0.3) was recorded, which could be related to the systematic loss of thorium during the fabrication process. The measured activity concentrations for these radionuclides were comparable with the reported data obtained from similar materials used in other countries showing similarity in ceramic materials used in buildings. Five different radiation indices, such as the average radium equivalent (Raeq), the absorbed dose rate (D), the annual effective dose equivalent (AEDE), the external hazard index (Hex), and the radioactivity level index (lγ), which indicate hazardous radiation, were estimated from these measurements. The obtained results revealed average values of 274 ± 106 Bq/kg, 125 ± 48 nGy/h, 1.23 ± 0.48 mSv/y, 0.74 ± 0.29, and 0.94 ± 0.37, for Raeq, D, AEDE, Hex, and lγ, respectively. The mean values of Raeq and Hex were in good agreement with the international limits, while the means of D and lγ were higher than the universal values. Calculated AEDE in about 60% of the samples exceeded the universal limit of 1 mSv/y for the public exposure (maximum value of 2.16 mSv/y). The investigated parameters were in the same range for the majority of imported samples; however, they were slightly higher than the locally produced ceramic, highlighting the importance of monitoring imported materials for their radioactivity contents.
Highlights
Occurring radioactive materials (NORMs) are present at a low concentration in the environment [1]
The aim of this study is to explore the radiological hazards of ceramic used in buildings
The samples were obtained from different factories and include ceramic tiles used as a building material for walls and floors in Sudan
Summary
Occurring radioactive materials (NORMs) are present at a low concentration in the environment [1]. These natural radionuclides, including long-lived radioactive elements, such as uranium, thorium, potassium, and the decay product radium, can be classified according to their origin and formation. NORMs occur in various natural materials (e.g., soils, water, gas, and non-metal minerals, including fertilizer raw materials, such as rock phosphate and apatite) [2,3]. It has been demonstrated that metal ores (tantalum, tin, niobium ores, gold, copper, etc.) are associated with NORM [4]. Materials containing NORMs with an elevated radionuclides content which are used in industrial activities represent an environmental problem that needs to be addressed [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.