Abstract

Single residues of O6-methylguanine (O6-meG) were introduced into the first or second position of codon 12 (GGC; positions 12G1 or 12G2, respectively) or the first position of codon 13 (GGT; position 13G1) of the human Ha-ras oncogene in phage M13-based vectors. After transformation of E.coli, higher mutant plaque frequencies (MPF) were observed at 12G1 and 13G1 than at 12G2 if O6-alkylguanine-DNA alkyltransferase (AGT) had been depleted, while similar MPF were observed at all three positions in the presence of active AGT. Taken together, these observations suggest reduced AGT repair at 12G2. Kinetic analysis of in vitro DNA replication in the same sequences using E. coli DNA polymerase I (Klenow fragment) indicated that variation in polymerase fidelity may contribute to the overall sequence specificity of mutagenesis. By constructing vectors which direct methyl-directed mismatch repair to the (+) or the (-) strand and comparing the MPF values in bacteria proficient or deficient in mismatch repair and/or AGT, it was concluded that, while mutS-mediated mismatch repair did not remove O6-meG from O6-meG:C pairs, this repair mechanism can affect O6-meG mutagenesis by repairing G:T pairs generated through AGT-induced demethylation of O6-meG:T replication intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.