Abstract

Recently, transformer-based pretrained language models have demonstrated stellar performance in natural language understanding (NLU) tasks. For example, bidirectional encoder representations from transformers (BERT) have achieved outstanding performance through masked self-supervised pretraining and transformer-based modeling. However, the original BERT may only be effective for English-based NLU tasks, whereas its effectiveness for other languages such as Korean is limited. Thus, the applicability of BERT-based language models pretrained in languages other than English to NLU tasks based on those languages must be investigated. In this study, we comparatively evaluated seven BERT-based pretrained language models and their expected applicability to Korean NLU tasks. We used the climate technology dataset, which is a Korean-based large text classification dataset, in research proposals involving 45 classes. We found that the BERT-based model pretrained on the most recent Korean corpus performed the best in terms of Korean-based multiclass text classification. This suggests the necessity of optimal pretraining for specific NLU tasks, particularly those in languages other than English.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.