Abstract
AbstractTiC/a‐C:H and a‐C:H nanocomposite coatings were prepared on AISI 440C steel substrates using magnetron sputtering process. A comparative study was made on their composition and microstructure by Raman spectroscopy and high‐resolution transmission electron microscopy (HRTEM). The tribological properties of two types of carbon‐based coatings were investigated by pin‐on‐disc tribometer under the sand‐dust conditions concerning the influence of applied load, amount of sand and sand particle sizes. The results show that these carbon‐based coatings exhibited high tribological performance with low friction coefficient and wear rate under the sand‐dust environments. However, the TiC/a‐C:H coatings exhibit relatively higher fluctuant friction coefficient as well as higher wear rate in comparison with the a‐C:H coatings under sand‐dust environments. The formation of nanocrystalline hard TiC phase distributed in amorphous carbon matrix decreased the residual stress but significantly increased the hardness and Young's modulus of TiC/a‐C:H coatings, and consequently caused a relatively higher abrasive and fatigue wear loss under the sand‐dust conditions. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.