Abstract

In this paper, we compare the characteristics of methane activation by diverse plasma sources. The test conditions of reactant flow rate and composition are fixed for each plasma source to eliminate any possible misleading effects from varying test conditions. Among the diverse characteristics of each plasma source, we focus on the electron energy and degree of thermal activation in evaluating the cost-effectiveness of methane decomposition. The reaction is evaluated based on the selectivity of specific products, including H2, C2H6, and C2H2. Among the tested plasma sources, those that provide a somewhat thermal environment have a rather high degree of warmness, resulting in higher methane conversion and lower operational costs. As the non-thermal characteristics of the plasma sources become stronger, the selectivity of C2H6 increases. This reflects C2H6 formation from the direct collision of CH4 with high-energy electrons. On the other hand, as the degree of warmness increases, the selectivity of H2 and C2H2 increase. The results give an insight into possible tools for process control or selectivity control by varying the degree of warmness in the plasma source. The process optimization and cost reduction of methane activation should be based on this concept of selectivity control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call