Abstract

The in-plane compressive behavior of two- and three-dimensional woven composite was investigated at high strain rates. The Split Hopkinson Pressure Bar is employed to test the high strain rate dynamic mechanical properties of E-glass vinylester composite material. For three-dimensional woven composite, two configurations were tested: compression responses along the stitched direction and orthogonal to the stitched direction. Dynamic compression properties for two- and three-dimensional are determined and compared. Experimental results show that the strain rate has a significant effect on the two- and three-dimensional woven composite response. It is observed that the three-dimensional woven composite has higher compression strength and dynamic modulus than the two-dimensional composite at high strain rate. For this study, a high-speed camera was used to determine the damage kinetics under dynamic load. The two-dimensional woven composite is mainly damaged in a mode of matrix cracks and severe delamination, while the mode for three-dimensional woven composite is mainly cracking of matrix and delamination for in-plane along to the stitched direction and shear banding failure for in-plane orthogonal to the stitched direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call