Abstract
In optical tomography, there exist certain spatial frequency components that cannot be measured due to the limited projection angles imposed by the numerical aperture of objective lenses. This limitation, often called as the missing cone problem, causes the under-estimation of refractive index (RI) values in tomograms and results in severe elongations of RI distributions along the optical axis. To address this missing cone problem, several iterative reconstruction algorithms have been introduced exploiting prior knowledge such as positivity in RI differences or edges of samples. In this paper, various existing iterative reconstruction algorithms are systematically compared for mitigating the missing cone problem in optical diffraction tomography. In particular, three representative regularization schemes, edge preserving, total variation regularization, and the Gerchberg-Papoulis algorithm, were numerically and experimentally evaluated using spherical beads as well as real biological samples; human red blood cells and hepatocyte cells. Our work will provide important guidelines for choosing the appropriate regularization in ODT.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.