Abstract

Influence corresponding to the position of δ-doped supplied layer on InGaP/GaAs high electron mobility transistors is comparatively studied by two-dimensional simulation analysis. The simulated results exhibit that the device with lower δ-doped supplied layer shows a higher gate potential barrier height, a higher saturation output current, a larger magnitude of negative threshold voltage, and broader gate voltage swing, as compared to the device with upper δ-doped supplied layer. Nevertheless, it has smaller transconductance and inferior high-frequency characteristics in the device with lower δ-doped supplied layer. Furthermore, a knee effect in current-voltage curves is observed at low drain-to-source voltage in the two devices, which is investigated in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call