Abstract

Investigations of inflorescence architecture offer insight into the evolution of an astounding array of reproductive shoot systems in the angiosperms, as well as the potential to genetically manipulate these branching patterns to improve crop yield and enhance the aesthetics of horticultural species. The diversity of inflorescences in the economically important family Oleaceae was studied from a comparative developmental point of view for the first time, based on species of seven genera (Chionanthus, Fontanesia, Fraxinus, Jasminum, Ligustrum, Olea, Syringa). Series of developmental stages of chemically fixed inflorescences were studied with epi-illumination light microscopy. All taxa studied have inflorescences with terminal flowers. The inflorescences are mostly panicles, but in some cases thyrsoids or compound botryoids. Phyllotaxis of the flower-subtending bracts is mostly decussate, rarely tricussate (Fraxinus) or spiral (Jasminum). Accessory flowers or accessory inflorescences, almost unknown in Oleaceae as yet, were found in two genera. In Syringa, common bract-flower primordia are formed by a delay in early bract development compared to flower development. Such a delay is also expressed by the loss of bracts in the distal part of inflorescence branches in Syringa and Chionanthus. Significant variation in branching pattern and phyllotaxy was observed among the studied species of Oleaceae. The suppression of bracts and formation of accessory flowers were found as special features of inflorescence ontogeny. The occurrence of accessory flowers and accessory partial inflorescences is interesting from the point of view of dense and flower-rich inflorescences in ornamental species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call