Abstract

Accurate identification of source information (i.e., source strength and location) is crucial for the air pollution control or effective accidental response. Optimization inversion based on bio-inspired algorithms (BIOs) is an effective method for estimating source information. However, the impacts of different BIOs and the shared parameter of population size in BIOs on source inversion performance have not been revealed. Here the source inversion performance (i.e., accuracy and robustness) of six typical BIOs [i.e., bacterial foraging optimization algorithm (BFO), chicken swarm optimization algorithm (CSO), differential evolution algorithm (DE), genetic algorithm (GA), particle swarm optimization (PSO), and seeker optimization algorithm (SOA)], and their population sizes are evaluated based on the Prairie Grass dataset which covering different atmospheric conditions (i.e., Pasquill stability classes A, B, C, D, E, and F). Results indicated the population size has substantial influence on source inversion. The accuracy of all BIOs in source strength fluctuated greatly when the population size was small, whereas, tended to be stable as the population size increased. Overall, the BFO had the best accuracy with lowest deviations (74.5% for source strength and 29.7 m for location parameter x0), whereas SOA had the best robustness for all source parameters. Atmospheric conditions indicated an obvious influence on the inversion performance of the BIOs. The BFO and CSO performed the best with the lowest deviations [137.5 and 26.7% for unstable conditions (A, B, and C) and stable condition (E), respectively], all algorithms are comparable (67.4 ± 2.1%) in neutral condition (D), and BFO and CSO had the comparable performances (23.2 and 24.3%) and performed better under extremely stable condition (F). This study enhances the understanding of the factors influencing source inversion and provides a reference for the selection of appropriate bio-inspired algorithms and the reasonable setting of population size parameter for source inversion in practical environmental management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call