Abstract
Herein, we report the results of a detailed study on the use of different Li imide salts (LiTFSI, LiFSI, and LiFTFSI) as electrolyte additives for lithium-ion batteries. The introduction of lithium imide salts in the electrolyte is shown to considerably improve the first cycle coulombic efficiency and the long-term cycling stability of graphite/LiFePO4 cells. Using LiTFSI, a capacity fading of only ∼2% occurred over 600 cycles while the control cell with the state-of-the-art additive (VC) lost ∼20% of the initial capacity at 20 °C. The results of the XPS and impedance spectroscopy measurements of graphite electrodes show that, after the formation cycle, the SEI obtained in the presence of imide salts is thinner, contains more LiF and is less resistive than that obtained using VC. Despite the beneficial effect of the imide salts on the lithium-ion cell performance, a slightly reduced thermal stability of the SEI is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.