Abstract

The aim of this work was to measure and compare the binding constants of antibody immunoglobulin G (IgG) to bacterial cell wall proteins, streptococcal protein G and Staphylococcus aureus protein A, using an acoustic wave sensor. Devices, which used shear-horizontal acoustic waves propagating in a waveguide configuration at 108 and 155 MHz, were employed in the detection of apparent IgG binding constants at the solid-liquid interface in the range of 6.7-667 nM IgG. Real-time data during IgG-protein G and IgG-protein A binding yielded apparent association constants of 3.29 x 10(4) and 8.02 x 10(3) M(-1) s(-1) leading to equilibrium constants of 1.13 x 10(8) and 2.90 x 10(7) M(-1), respectively. The measured apparent rate constants are consistent with literature reports of higher affinity of protein G for IgG. Furthermore, protein binding through the Fc region of IgG is suggested to occur below 333 nM, while different mechanisms are suggested to occur above 333 nM. For the first time, nonequilibrium studies of IgG-protein G and A binding at a solid-liquid interface has yielded valuable quantitative kinetic information about binding mechanisms. The promise of this detection method is shown by providing quick determination of binding constants with low sample volumes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.