Abstract

Prediction of groundwater depth (GWD) is a critical task in water resources management. In this study, the practicability of predicting GWD for lead times of 1, 2 and 3 months for 3 observation wells in the Ejina Basin using the wavelet-artificial neural network (WA-ANN) and wavelet-support vector regression (WA-SVR) is demonstrated. Discrete wavelet transform was applied to decompose groundwater depth and meteorological inputs into approximations and detail with predictive features embedded in high frequency and low frequency. WA-ANN and WA-SVR relative of ANN and SVR were evaluated with coefficient of correlation (R), Nash-Sutcliffe efficiency (NS), mean absolute error (MAE), and root mean squared error (RMSE). Results showed that WA-ANN and WA-SVR have better performance than ANN and SVR models. WA-SVR yielded better results than WA-ANN model for 1, 2 and 3-month lead times. The study indicates that WA-SVR could be applied for groundwater forecasting under ecological water conveyance conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.