Abstract

p-N,N-bis(2-chloroethyl)aminophenylacetic acid (PHE), a nitrogen mustard analogue and chlorambucil's active metabolite used as chemotherapeutic agent, has been shown that, in addition to its clastogenic activity, induces chromosome delay. In the present study an efford has been made (a) to investigate if the steroidal analogues of PHE (EA-92, EA-97, AK-333, AK-409 and AK-433) exert the same genetic activity as the parent compound, (b) to further analyze the aneugenic activity of nitrogen mustard analogues, (c) to investigate the mechanism by which they exert aneugenic potential and (d) to correlate the genetic activity with chemical structure. For this purpose the Cytokinesis Block Micronucleus (CBMN) assay was conducted in human lymphocytes in vitro and the micronucleus (MN) frequency was determined to investigate their genetic activity. The mechanism of micronucleation was determined in combination with Fluorescence In Situ Hybridization (FISH) using pancentromeric DNA probe. Since one of the mechanisms that chemicals cause aneuploidy is through alterations in the mitotic spindle, we also investigated the effect of the above compounds on the integrity and morphology of the mitotic spindle using double immunofluorescence of β- and γ-tubulin in C 2C 12 mouse cell line. We found that PHE and its steroidal analogues, EA-92, EA-97, AK-333, AK-409 and AK-433, affect cell proliferation in human lymphocytes and C 2C 12 mouse cells. All studied compounds are capable of inducing chromosome breakage events, as indicated by the enhanced C −MN frequencies. The less lipophilic compounds are the most genetically active molecules. PHE and only two of the studied analogues, AK-409 and AK-433, the most hydrophilic ones, showed aneugenic potential, by increasing the frequencies of MN containing a whole chromosome. The aneugenic potential of the above referred analogues is associated with amplification of centrosome number, since they caused high multipolar metaphase frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.