Abstract

Abstract This paper details a number of existing formulations used in Gaussian models in a clear and usable way, and provides a comparison within a single framework—the Gaussian plume and puff models of the air quality modeling system Polyphemus. The emphasis is made on the comparison between 1) the parameterizations to compute the standard deviations and 2) the plume rise schemes. The Gaussian formulas are first described and theoretically compared. Their evaluation is then ensured by comparison with the observations as well as with several well-known Gaussian and computational fluid dynamics model performances. The model results compare well to the other Gaussian models for two of the three parameterizations for standard deviations, Briggs’s and similarity theory, while Doury’s shows a tendency to underestimate the concentrations because of a large horizontal spread. The results with the Kincaid experiment point out the sensitivity to the plume rise scheme and the importance of an accurate modeling of the plume interactions with the inversion layer. Using three parameterizations for the standard deviations and the same number of plume rise schemes, the authors were able to highlight a large variability in the model outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.