Abstract

In this work, three theories of Functionally Graded Material (FGM) are compared for structural dynamic and static performance of the thin-walled rotating blade. For this purpose, the pretwisted Thin Wall Rotating Beam (TWRB) with a fixed angular velocity is considered. The goal is to find the desirable FG model with improved free vibration, static deformation, and buckling behavior of the FGM blades. The Euler–Lagrange equations of motion of the energetic system are extracted utilizing Hamilton's principle. The Extended Galerkin`s Method (EGM) is used to solve the governing equation of motions. The effects of some parameters, such as the FGM models, angular velocity, and pretwist angle on the mechanical behavior of the FG beams are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.