Abstract

AbstractThis study deals with the Reynolds‐averaged Navier–Stokes simulation of evaporation in a turbulent gas–liquid flow in a three‐dimensional duct, focussing on the results obtained by a four‐equation turbulence model within the framework of the Euler/Euler approach for multiphase flow calculations: in addition to the two‐equation k−ε model describing the turbulence of the continuous (C) phase, the computational model employs transport equations for the turbulence kinetic energy of the disperse (D) phase and for the velocity covariance q=〈{u}D{u}C〉D. In the present study, the evaporation model according to Abramzon and Sirignano (Int. J. Heat Mass Transfer 1989; 32:1605–1618) has been extended by introducing an additional transport equation for a newly defined quantity ā, defined as the phase‐interface surface fraction. This allows the change in the drop diameter to be quantified in terms of a probability density function. The source term in the equation describing the dynamics of the volumetric fraction of the dispersed phase αD is related to the evaporation time scale τΓ. The performance of the new model is evaluated by performing a comparative analysis of the results obtained by simulating a polydispersed spray in a three‐dimensional duct configuration with the results of the Euler/Lagrange calculations performed in parallel. Prior to these calculations, some selected (solid) particle‐laden flow configurations were computationally examined with respect to the validation of the background, four‐equation, eddy‐viscosity‐based turbulence model. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call