Abstract

The assembly of thioacetyl-terminated oligo(phenylene ethynylene)s (OPEs) on Au and Pt surfaces under an electric potential (electrochemical assembly, EA) was compared to assembly at an open circuit (conventional self-assembly, CSA). Cyclic voltammetry and ellipsometry were used to characterize the adsorption kinetics of self-assembled monolayers formed by these two techniques. The adsorption rate of the EA was remarkably faster at positive potentials but slower at negative potentials than that of the CSA, The EA at 400 mV proceeded about 800 times faster than the CSA when exposed to the same solution concentrations. The adsorption rates of both EA and CSA were found to be dependent on the molecular structures of OPEs. OPEs containing electron-donating groups assemble faster than those with electron-withdrawing groups. The amount of time that the thioacetyl-terminated OPE is in the presence of the base, for removal of the acetyl group to generate the thiolate, is called the deprotection time. Deprotection times play a critical role in achieving the maximum difference in adsorption rates between the EA and the CSA. The assembly must be initiated no later than 5 min after the basic deprotection is commenced so that the thiolate concentration remains low. The difference in the adsorption rates between EA and CSA might enable selective deposition of certain OPEs onto specific electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call