Abstract

BackgroundAnalysis of circulating tumor DNA (ctDNA) is increasingly used for clinical decision-making in oncology. However, ctDNA could represent ≤ 0.1 % of cell-free DNA in early-stage tumors and its detection requires high-sensitive techniques such as digital PCR (dPCR). MethodsIn 46 samples from patients with early-stage breast cancer, we compared two leading dPCR assays for ctDNA analysis: QX200 droplet digital PCR (ddPCR) system from Bio-Rad which is the gold-standard in the field, and Absolute Q plate-based digital PCR (pdPCR) system from Thermo Fisher Scientific which has not been reported before. We analyzed 5 mL of baseline plasma samples prior to any treatment. ResultsBoth systems displayed a comparable sensitivity with no significant differences observed in mutant allele frequency. In fact, ddPCR and pdPCR possessed a concordance > 90 % in ctDNA positivity. Nevertheless, ddPCR exhibited higher variability and a longer workflow. Finally, we explored the association between ctDNA levels and clinicopathological features. Significantly higher ctDNA levels were present in patients with a Ki67 score > 20 % or with estrogen receptor-negative or triple-negative breast cancer subtypes. ConclusionBoth ddPCR and pdPCR may constitute sensitive and reliable tools for ctDNA analysis with an adequate agreement in early-stage breast cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call