Abstract
Studies have been conducted on the copper complexes formed with two sexadentate macrocyclic ligands containing four thioether sulfur donor atoms plus either two nitrogen or two oxygen donor atoms on opposing sides of the ring. The resulting two ligands, L, designated as [18]aneS(4)N(2) and [18]aneS(4)O(2), respectively, represent homologues of the previously studied Cu(ii/i) system with a macrocycle having six sulfur donor atoms, [18]aneS(6). Crystal structures of [Cu(II)([18]aneS(4)O(2))](ClO(4))(2) and [Cu(I)([18]aneS(4)O(2))]ClO(4) have been determined in this work. Comparison of the structures of all three systems reveals that the oxidized complexes are six coordinate with two coordinate bonds undergoing rupture upon reduction. However, the geometric changes accompanying electron transfer appear to differ for the three systems. The stability constants and electrochemical properties of both of the heteromacrocyclic complexes have been determined in acetonitrile and the Cu(II/I)L electron-transfer kinetics have been studied in the same solvent using six different counter reagents for each system. The electron self-exchange rate constants have then been calculated using the Marcus cross relationship. The results are compared to other Cu(II/I)L systems in terms of the effect of ligand geometric changes upon the overall kinetic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.