Abstract
A comparative study regarding the electrocatalytic activity of graphene oxide (GO), chemically-reduced graphene oxide ( crGO) and graphene produced by direct liquid exfoliation ( dG) is presented. Sensors were developed by modifying glassy carbon (GC) electrodes with GO, crGO and dG and ascorbic acid was used as a pilot analyte. GC/GO electrodes offer substantially lower oxidation overpotential, up to 350 mV, compared with GC/ crGO, GC/ dG and unmodified GC electrodes. In addition, the different carbon-to-oxygen atomic ratios in GO, as it occurs depending on the synthetic route, were found to have a remarkable effect on the performance of the sensors. Reduction of GO was achieved by immersing the modified electrodes into a stirred solution of NaBH 4 for 10 min at room temperature. This process was used alternatively of the time consuming and laborious process of hydrazine, and its effectiveness was confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. Analytical utility of the sensors is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.