Abstract

Free surface flows are of significant interest in Computational Fluid Dynamics (CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics (SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH (WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH (ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call