Abstract
This study explores the potential of machine learning models to predict evaporator heat transfer performance in Modular Refrigerated Display Cases (MRDCs). Six experimental datasets from MRDC systems were analyzed to compare the efficacy of six machine learning models: Linear Regression, Decision Tree Regression, Support Vector Machines (SVMs), Feedforward Neural Networks (FNNs), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM). The findings indicate that the ensemble tree-based models, LightGBM and RF, are particularly effective in predicting evaporator heat transfer performance. These models demonstrate high accuracy and robustness, effectively capturing the nonlinear relationship between the evaporator temperature and heat transfer coefficient. Moreover, LightGBM and RF exhibit notable stability and adaptability in scenarios of limited data availability and elevated noise levels. Their consistent predictive accuracy across different experimental conditions highlights their suitability for complex refrigeration systems. This research provides essential insights for optimizing MRDC evaporator performance, establishing a theoretical and data-driven foundation for energy-efficient enhancements and intelligent management within cold chain systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.