Abstract
The green adsorbents were prepared by using cranberry (Cornus mas) kernel shell (CKS), rosehip (Rosa canina) seed shell (RSS), and banana (Musa cavendishii) peel (BP) and were proved in removing Cr(VI). Several parameters to remove Cr(VI) such as pH, adsorbent dosage, contact time, initial Cr(VI) ions concentration, and temperature were tested. The functional groups in the matrix of CKS, RSS, and BP were detected by FT-IR for raw biomasses together with Cr(VI). The equilibrium results were inspected using four different isotherm models, with a better fitting to the Langmuir model. The maximum adsorption quantities for Cr(VI) ions were 10.42, 15.17, and 6.81 mg/g for BP, RSS, and CKS, respectively. The interrelationship coefficients were expressed by a pseudo-second-order kinetic model, assuming that the overall Cr(VI) adsorption rate is limited by the rate of adsorbate diffusion in the pores of biomass.
Highlights
The discharge of heavy metals into drain water through industrial actions has become a big issue for humans and aquatic lives
The results showed that a slow increase in Cr(VI) elimination was observed after an adsorbent amount of 10 g/L for banana (Musa cavendishii) peel (BP), Rosehip seed shell (RSS), and Cranberry kernel shell (CKS)
The results showed that the regression coefficient (R2) values of Cr(VI) adsorption was closer to 1, indicating that the most of the adsorption followed the pseudo-second-order kinetic model and it signifies that “chemisorption” took place during the reaction for all concentrations of Cr(VI)
Summary
The discharge of heavy metals into drain water through industrial actions has become a big issue for humans and aquatic lives. Chromium as a heavy metal is one of the top 16 toxic metals that have destructive effects on human health (Wang et al 2011). It defectively influences the human being by oxidizing the building block of DNA and some protein molecules. The toxicity of Cr(VI) has negative effects such as skin irritation, asthma, ulceration, and severe diarrhea. It harms the kidney, circulatory tissues, liver, and nerve tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.