Abstract

Not identified as being exposed or infected, the group of asymptomatic and presymptomatic patients has become the key source of infectious hosts for the COVID-19 pandemic, triggering the re-emergence of outbreaks. Acknowledging the impacts of movement of unidentified patients and the limited testing capacity on understanding the spread of the virus, an augmented Susceptible-Exposed-Infectious-Confirmed-Recovered (SEICR) model integrating intercity migration data and testing capacity is developed to probe into the number of unidentified COVID-19 infected patients. This model allows evaluation of the effectiveness of active interventions, and more accurate prediction of the pandemic progression in a country, region or city. A pseudo-coevolutionary algorithm is adopted in the model fitting to provide an effective estimation of high-dimensional unknown parameter sets using a limited amount of historical data. The model is applied to 175 regions in Australia, Canada, Italy, Japan, Spain, the UK and USA to estimate the number of unconfirmed cases using limited historical data. Results showed that the actual number of infected cases could be 4.309 times as many as the official confirmed number. By implementing mass COVID-19 testing, the number of infected cases could be reduced by about 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.