Abstract

Quantum dot (QD) assemblies are nanostructured networks made from aggregates of QDs and feature improved charge and energy transfer efficiencies compared to discrete QDs. Using first-principles many-body perturbation theory, we systematically compare the electronic and optical properties of two types of CdS QD assemblies that have been experimentally investigated: (i) QD gels, where individual QDs are covalently connected via di- or polysulfide bonds, and (ii) QD nanocrystals, where individual QDs are bound via van der Waals interactions. Our work illustrates how the electronic and optical properties evolve when discrete QDs are assembled into 1D, 2D, and 3D gels and nanocrystals, as well as how the one-body and many-body interactions in these systems impact the trends as the dimensionality of the assembly increases. Furthermore, our work reveals the crucial role of the di- or polysulfide covalent bonds in the localization of the excitons, which highlights the difference between QD gels and QD nanocrystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call