Abstract
Concentrated solar power plants using chloride molten salt as heat transfer fluids imply high corrosion risks. The corrosion behaviour of SS310 stainless steel in NaCl-KCl-MgCl2 and NaCl-KCl-CaCl2 molten salts was comparatively studied. MgCl2 exhibits remarkably higher hygroscopicity than CaCl2, inducing a significant difference in the concentration of HCl that directly results in the matrix corrosion. The hydrolysis of MgCl2 produces large amounts of MgO that destroys Cr2O3 film and produce less-protective MgCr2O4. Correspondingly, a heterogeneous oxide bilayer is formed in NaCl-KCl-MgCl2. In NaCl-KCl-CaCl2, a lamellar oxide layer composed of primarily Ni(Fe,Cr)2O4 can effectively block the corrosive species H2O and HCl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.