Abstract
ABSTRACTBackground:An ideal CO monitor should be noninvasive, cost effective, reproducible, reliable during various physiological states. Limited literature is available regarding the noninvasive CO monitoring in open chest surgeries.Aim:The aim of this study was to compare the CO measurement by Regional Impedance Cardiography (RIC) and Thermodilution (TD) method in patients undergoing off pump coronary artery bypass graft surgery (OPCAB).Settings and Design:We conducted a prospective observational comparative study of CO measurement by the noninvasive RIC method using the NICaS Hemodynamic Navigator system and the gold standard TD method using pulmonary artery catheter in patients undergoing OPCAB. A total of 150 data pair from the two CO monitoring techniques were taken from 15 patients between 40-70 years at various predefined time intervals of the surgery.Patients and Methods:We have tried to find out the accuracy, precision and cost effectiveness of the newer RIC technique. Mean CO, bias and precision were compared for each pair i.e.TD-CO and RIC-CO as recommended by Bland and Altman. The Sensitivity and specificity of cutoff value to predict change in TD-CO was used to create a Receiver operating characteristic or ROC curve.Results:Mean TD-CO values were around 4.52 ± 1.09 L/min, while mean RIC- CO values were around 4.77± 1.84 L/min. The difference in CO change was found to be statistically not significant (p value 0.667). The bias was small (-0.25). The Bland Altman plot revealed a mean difference of -0.25 litres. The RIC method had a sensitivity of 55.56 % and specificity of 33.33 % in predicting 15% change in CO of TD method and the total diagnostic accuracy was 46.67%.Conclusion:A fair correlation was found between the two techniques. The RIC method may be considered as a promising noninvasive, potentially low cost alternative to the TD technique of hemodynamic measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.