Abstract

The semiconducting ZnS nanocrystallites were synthesized by sequential high dose ion implantation of Zn and S in thermally grown SiO 2 on Si(1 0 0) and subsequent rapid thermal annealing (RTA). Some samples were pre-implanted with Ar ions in order to investigate the influence of radiation induced damage on the formation of ZnS nanocrystallites. The crystal structure of the ZnS crystallites, their size distribution and the concentration depth profile were analyzed by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS) and cross-sectional transmission-electron-microscopy (XTEM). The XRD results indicate, that the phase transition from cubic zinc blende to hexagonal wurtzite structure of ZnS nanocrystallites begins at temperatures below 1000 °C. The RBS results show a clear redistribution of Zn and S after RTA annealing. The concentration of Zn is seriously reduced due to strong diffusion towards deeper regions and the surface, while Ar pre-implantation partially suppressed the concentration loss of Zn. Moreover XTEM images show that the concentration profile, the radiation induced damage and the annealing temperature have strong influence on the resulting size distribution of formed ZnS nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.