Abstract

In this paper, some important operating parameters of nuclear power plants (NPPs) transients are forecasted using different supervised learning methods including feed-forward back propagation (FFBP) neural networks such as cascade feed-forward neural network (CFFNN), statistical methods such as support vector regression (SVR), and localized networks such as radial basis network (RBN). Different learning algorithms, including gradient descent (GD), gradient descent with momentum (GDM), scaled conjugate gradient (SCG), Levenberg-Marquardt (LM), and Bayesian regularization (BR) are used in CFFNN method. SVR method is used with different kernel functions including Gaussian, polynomial, and linear. RBN is used with radial activation function. Comparison of the results indicates that learning algorithms based on Gaussian distribution function (i.e. BR algorithm) and Gaussian kernel/activation functions are, in general, more precise for time series prediction. Moreover, learning methods based on Gaussian function lead to acceptable results in prediction of complicated time series, such as core inlet flowrate of large break loss of coolant accident (LBLOCA) which are changed irregularly and drastically. In other words, Gaussian learning algorithms/kernel functions/activation functions are appropriate choices for NPPs parameters forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.