Abstract
Abstract Energy conversion efficiency increase in power plants with high-temperature gas-cooled reactors via implementation of the bottoming cycle was investigated under nominal and minimal thermal load of a high-temperature reactor (HTR). Heat transfer surface area and turbine outlet volumetric flow rate in bottoming cycles was also investigated. Water and two low-boiling point working fluids (ammonia and ethanol) were analyzed. Analyzed thermodynamic cycles consisted of a closed Joule-Brayton cycle with helium as working medium, which was investigated in configurations with heat regeneration, compressor intercoolers, and in a simple design. Organic versus steam Rankine cycles were compared; low-boiling point fluids under supercritical conditions in some configurations provide higher cycle energy efficiency than the gas-steam cycle. Volumetric flow rates in the last turbine stages were reduced against the steam turbine to 38% and 0.8% with ethanol and ammonia, respectively. The steam Rankine cycle configuration provided the smallest heat transfer surface increase compared with the base cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.