Abstract

PurposeThis paper aims to study the corrosion inhibition of Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1,2,3-triazol-1-yl) acetate (MBTTA) in 1 M H2SO4 solution at 25 °C.Design/methodology/approachThe authors have used weight loss measurements, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, FT-IR, quantum chemical calculations and scanning electron microscopy (SEM) techniques.FindingsThe polarization measurements indicate that both compounds are mixed type inhibitors, and that MBTTA is more effective than MBPTA. The effect of temperature on the corrosion behavior using optimal concentration of MBTTA and MBPTA was studied in the temperature range 298-328 K. SEM was used to examine the morphology of the metal surface. Thermodynamic parameters were calculated and discussed. Monte Carlo simulations were applied to lookup for the most stalls configuration and adsorption energy for the interaction of inhibitors on Fe (1 1 1) interface. The difference in inhibition efficiencies between the two organic inhibitors can be clearly explained in terms of frontier molecular orbital theory.Originality/valueThe authors report on the comparative inhibiting effect of two new 1,4-disubstituted 1,2,3-triazoles, namely Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1, 2, 3-triazol-1-yl) acetate (MBTTA) on mild steel corrosion in 1 M H2SO4solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.