Abstract

Magnetic polymer composites were synthesized via suspension polymerization method, incorporating nanoFe3O4powder into poly (methyl methacrylate) (PMMA) and polystyrene (PS) matrices in order to obtain polymer magnetic microspheres with perspectives in sensing applications. The monomer (MMA or Styrene) and the magnetic powder (pre-made Fe3O4, 20nm in diameter) are mixed together under vigorous stirring and follows suspension polymerization. The product was sequentially filtered through a range of sieves and spherical composites were obtained with grains of sizes ranging from 45μm to 250μm. The yield of polymerization was 60% to 85% for the two different matrices in samples and the corresponding polymer product contained 1.25wt% to 4.00wt% of Fe3O4. It is observed that increasing the content of magnetite affect the surface morphology of the microspheres and their magnetic behavior. The pure nanoFe3O4powder and the magnetic polymer microspheres were characterized using techniques such as X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), optical microscopy and magnetization measurements carried out by a Vibrating Sample Magnetometer (VSM) .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.