Abstract
PurposeThe purpose of this paper is to overcome the application limitations of other multi-variable regression based on polynomials due to the huge computation room and time cost.Design/methodology/approachIn this paper, based on the idea of feature selection and cascaded regression, two strategies including Laguerre polynomials and manifolds optimization are proposed to enhance the accuracy of multi-variable regression. Laguerre polynomials were combined with the genetic algorithm to enhance the capacity of polynomials approximation and the manifolds optimization method was introduced to solve the co-related optimization problem.FindingsTwo multi-variable Laguerre polynomials regression methods are designed. Firstly, Laguerre polynomials are combined with feature selection method. Secondly, manifolds component analysis is adopted in cascaded Laguerre polynomials regression method. Two methods are brought to enhance the accuracy of multi-variable regression method.Research limitations/implicationsWith the increasing number of variables in regression problem, the stable accuracy performance might not be kept by using manifold-based optimization method. Moreover, the methods mentioned in this paper are not suitable for the classification problem.Originality/valueExperiments are conducted on three types of datasets to evaluate the performance of the proposed regression methods. The best accuracy was achieved by the combination of cascade, manifold optimization and Chebyshev polynomials, which implies that the manifolds optimization has stronger contribution than the genetic algorithm and Laguerre polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.