Abstract

The pure CuS and Mn2+ doped CuS nanoparticles are synthesized by wet chemical route. The CuS phase and hexagonal crystal structure is confirmed by the powder X-ray diffraction and Raman analysis. The vibrational bonds present in the respective synthesized samples are confirmed by Fourier transformed infra-red spectroscopy. The spherical shapes of the nanoparticles are validated by the electron diffraction in scanning and transmission mode. The thermal analysis showed the Mn2+ doped CuS nanoparticles to be more stable than pure CuS nanoparticles. The thermal parameters determined using Coats-Redfern relation stated thermal activation energy and enthalpy change values are highest in the higher temperature range. The Seebeck coefficient variation with temperature and ambient condition Hall effect measurements showed the synthesized nanoparticles to be semiconducting and p-type in nature. The magnetic properties study by Gouy method showed the nanoparticles to be paramagnetic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call